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Abstract
    Diabetes mellitus is one of the most common chronic diseases 
worldwide, with its prevalence expected to rise sharply. Projections 
suggest that by 2050, more than 1.3 billion people globally will be 
living with diabetes, a significant increase from the current estimate 
of 529 million. A case of Type I diabetes is characterized by the 
pancreas failing to produce adequate amounts of insulin, which leads 
to uncontrolled blood glucose levels. Traditionally, management 
involves patient-administered insulin and monitoring blood glucose 
levels (BGLs) based on dietary intake reported by the patient.
   This study introduces an innovative method that leverages advanced 
Artificial Intelligence (AI) techniques to continuously predict blood 
glucose levels for the short term (+30 minutes) from the current 
situation. The techniques applied include Deep Learning with Artificial 
Neural Networks (ANNs), Genetic Algorithms (GAs), and Reinforcement 
Learning. These methods analyzed both raw BGL data and additional 
information derived from a Diabetic Dynamic Model of BGLs.
     The study’s preliminary evaluation used data from four virtual patients 
generated by an open-source diabetes simulation tool and three 
real diabetic patients using the DexCom SEVEN system. The results 
indicated that the knowledge-based approach significantly enhanced 
prediction accuracy, with Genetic Algorithms outperforming ANNs. 
Additionally, the integration of online learning and Reinforcement 
Learning, which adapt to emerging data patterns, further improved 
predictive accuracy.
     This advanced methodology demonstrates considerable potential 
for enhancing diabetes management by providing timely and precise 
BGL predictions without direct patient input. Future studies involving 
larger cohorts of both Type I and Type II diabetic patients are necessary 
to validate these promising results.
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• Introduction

Diabetes mellitus is a widespread chronic disease, with global prevalence on 
the rise. The International Diabetes Federation reported that in 2024, approximately 
540 million people worldwide are living with diabetes. This number is projected to 
more than double, reaching over 1.3 billion by 2050, representing a 140.74% increase 
(Institute for Health Metrics and Evaluation, 2023; International Diabetes Federation, 
2024).

Diabetes is characterized by the body’s inability to regulate blood glucose levels 
effectively. In Type I diabetes, this is due to the pancreas producing insufficient insulin. 
In Type II diabetes, it results from the body’s inefficient use of insulin, often linked to 
obesity and inactivity. Managing Type I diabetes typically involves subcutaneous insulin 
injections. Early detection and proactive management of blood glucose levels (BGL) 
are essential to prevent severe complications like hypoglycemia and hyperglycemia 
(World Health Organization, 2023).

Traditionally, individuals with diabetes monitor their blood glucose levels by 
obtaining a small blood sample from the fingertip and measuring it with a glucose 
meter. Recent advancements in continuous glucose monitoring (CGM) technology 
have introduced devices capable of continuously tracking glucose levels over several 
days. These systems, which can be non-invasive or minimally invasive, are portable and 
integrate easily into daily routines. Although some CGM devices are still undergoing 
clinical validation, there is a consensus that they will significantly enhance diabetes 
management by allowing precise adjustments for better metabolic control. The 
increased accuracy and ease of use of these devices improve patient adherence and 
overall health outcomes by providing real-time glucose data, reducing the risks of 
hypo- and hyperglycemia (Heise et al., 2023; Frontiers in Diabetes, 2023).

Early computer-based approaches to predicting blood glucose levels (BGLs) used 
both linear and non-linear algorithms, including Artificial Neural Networks (ANNs), 
applied to patient data. These methods often relied on qualitative inputs from patients, 
such as dietary intake, alongside quantitative measures like BGLs and insulin dosages. 
In SimGlucose, the simulator includes predefined patient profiles based on real clinical 
data. These profiles model the variability in glucose-insulin dynamics among different 
patients and cover a range of ages and conditions, specifically categorizing patients 
into adolescents, adults, and children with 10 profiles each, resulting in a total of 30 
patient profiles (SimGlucose).

The accuracy of these predictive models is typically evaluated using the Root-
Mean-Square-Error (RMSE) metric. Recent research has shown that machine learning 
techniques can improve RMSE values. For example, Cai et al. (2020) used attention-
based neural networks, while Zhao et al. (2019) applied deep learning techniques 
to enhance BGL prediction accuracy. These studies indicate that advanced machine 
learning methods hold significant potential for improving diabetes management.

Background
Ongoing advancements in predictive algorithms, particularly those utilizing 

Artificial Neural Networks (ANNs) and other machine learning methods, have shown 
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promising results in the effective management of diabetes. These technologies 
provide accurate and timely blood glucose level (BGL) predictions, which are crucial 
for enhancing disease management and improving patient outcomes. As shown in 
Table 1, ANNs trained with optimal parameters have demonstrated high accuracy in 
predicting BGLs, underscoring their potential in diabetes care. By leveraging these 
advanced techniques, healthcare providers can more effectively monitor and control 
BGLs, leading to more precise treatment adjustments and better overall health 
management for individuals with diabetes.

Table 1: Accuracies for ANNs Trained with Optimal Parameters.
Study ERROR or RMSE
( (RMSE (mmol/l 2.0 - 1.5
(Zhao et al. (2019 (RMSE (mmol/l 1.8 - 1.2
(Heise et al. (2023 (RMSE (mmol/l 2.5 - 2.0
( (RMSE (mmol/l 3.0 - 2.1
(Pei et al. (2018 (RMSE (mmol/l 1.5 - 1.0
(Wu (2005 (RMSE (mmol/l 4.0 - 3.5

This research leverages advanced computational methods to forecast short-term blood 
glucose levels (BGL) for the next 30 minutes using continuous glucose monitoring (CGM) 
data from the prior hour. Notably, this predictive model operates without requiring 
any subjective input from the patient. This significant feature enhances the model’s 
practicality and user-friendliness, ensuring that patients do not need to provide 
additional data or estimations for accurate predictions. The primary goal is to enable 
timely interventions, allowing patients to take proactive measures to prevent their 
BGL from reaching potentially hazardous levels, thereby improving overall diabetes 
management and patient safety.

The integration of advanced algorithms and machine learning techniques has 
significantly enhanced the precision of blood glucose level (BGL) predictions in diabetes 
management. Utilizing continuous glucose monitoring (CGM) data, these sophisticated 
methods play a crucial role in averting hypoglycemia and hyperglycemia.

Cai et al. (2020) demonstrated the effectiveness of attention-based neural networks 
in forecasting BGLs for type 1 diabetes patients, achieving notable improvements in 
Root-Mean-Square-Error (RMSE) metrics. Similarly, Zhao et al. (2019) applied deep 
learning methodologies to mobile health data, further refining BGL prediction 
accuracy. These studies illustrate the substantial potential of neural network models in 
advancing diabetes management tools.

In the realm of non-invasive monitoring, Heise et al. (2023) explored the use of 
near-infrared reflection spectroscopy for glucose monitoring, proposing innovative 
multivariate calibration strategies. This approach aims to offer a more convenient and 
less intrusive method for patients to track their glucose levels.

Kumar and Dubey (2019) expanded on the versatility of machine learning 
applications beyond healthcare, showcasing their potential in predicting diverse 
outcomes across various domains. Their research underlines the broad applicability of 
these techniques.

Eskaf et al. (2008) contributed significantly to the field by utilizing a Diabetic 
Dynamic Model and Genetic Algorithms for BGL prediction. Their approach, 
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incorporating feature extraction and Artificial Neural Networks, demonstrated 
considerable enhancements in prediction accuracy and reliability.

Furthermore, Wu’s (2005) research on the self-management of type 2 diabetes 
using dynamic modeling provides valuable insights into developing personalized 
strategies for improving patient outcomes. This work emphasizes the importance of 
tailored approaches to effective diabetes management.

Collectively, these advancements underscore the critical role of machine learning 
and advanced algorithms in improving diabetes management through accurate and 
timely BGL predictions.

2. Methodology
2.1 Data Acquisition

This study utilized data from two primary sources: simulated data from virtual 
diabetic patients using the SimGlucose system and real-world data from volunteers 
equipped with Continuous Glucose Monitoring (CGM) devices.
Simulated Patient Data: The SimGlucose simulator employs predefined patient 
profiles based on real clinical data. These profiles encompass a diverse range of ages 
and conditions to model the variability in glucose-insulin dynamics across different 
patient types. Specifically, the simulator includes 10 profiles each for adolescents, 
adults , and, resulting in a total of 30 profiles. This comprehensive representation of 
patient profiles allows for a controlled environment to evaluate predictive algorithms 
under stable conditions (SimGlucose).
Clinical Patient Data: Data was gathered from three volunteers, including two 
individuals with diabetes, using the DexCom SEVEN CGM system. This device is designed 
for both home and clinical use and is waterproof, allowing patients to wear it during 
various activities, including showering or swimming. The study was conducted under 
the supervision of a certified medical diabetic clinic, adhering to the ethical standards 
outlined in the World Medical Association’s Declaration of Helsinki. All participants 
provided written informed consent. The inclusion of real-world data provides a practical 
perspective on the performance of predictive algorithms in uncontrolled, everyday 
scenarios.

DexCom SEVEN CGM System Components:

Figure 1, Dexcom G6 CGM Components.

As depicted in Figure 1, the main components of the Continuous Glucose Monitoring 
(CGM) system include:
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1. Sensor: A small, flexible sensor made of platinum wire, which is inserted just 
beneath the skin and secured with an adhesive patch. This sensor continuously 
measures glucose levels in the interstitial fluid.
2. Transmitter: A compact, lightweight, and water-resistant device that 
attaches to the sensor. It sends glucose data to the receiver every five minutes, 
forming a discrete monitoring unit.
3. Receiver: A wireless device with a large display that shows current glucose 
readings and trends over 1-, 3-, and 9-hour intervals. The receiver can store up to 
30 days of data, providing a comprehensive overview of the patient’s glucose 
patterns.

These components work together to provide continuous and detailed glucose 
monitoring, enabling better management of diabetes.
Study Protocol: During the data recording period, the volunteers maintained their 
usual routines without any prescribed restrictions on exercise, meal timings, or sizes. 
This approach ensured that the data collected reflected realistic daily variations in 
glucose levels, providing a robust dataset for testing the predictive models.
Data Management: The collected CGM data included glucose readings every five 
minutes over a period of several days. This high-resolution data allowed for detailed 
analysis and the development of predictive models that could accurately forecast 
short-term glucose trends. The data management process involved preprocessing 
steps such as filtering, normalization, and feature extraction to prepare the data for 
input into the predictive algorithms.

By combining data from both virtual and real-world sources, the study aimed 
to leverage the strengths of controlled simulations and real-life variability, thereby 
enhancing the robustness and applicability of the predictive models. This dual approach 
also facilitated the validation of the models under diverse conditions, ensuring their 
reliability and effectiveness in managing diabetes.

2.2 Diabetic Dynamic Model
The Diabetic Dynamic Model used for generating metadata for prediction 

algorithms is based on the Dynamic Damping Model proposed by Wu in 2005. This 
model views the post-prandial blood glucose excursion as a resilient system regulated 
by hormones, where food intake functions as a glucose bolus injection.

The primary objective is to simulate the body’s natural response to food consumption 
and the subsequent blood glucose fluctuations. This involves understanding the 
regulatory roles of hormones such as insulin and glucagon in maintaining glucose 
homeostasis. By modeling the dynamic interactions between food intake, hormone 
release, and glucose metabolism, this approach facilitates the prediction of blood 
glucose levels.

The model’s strength lies in its ability to account for these interactions, providing a 
robust framework for developing accurate prediction algorithms that mirror the body’s 
physiological responses to dietary glucose intake.
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Figure 2, Diabetic Dynamic Model.

The model is depicted in Figure 2, where the impulse force, F(t), symbolizes the 
bolus injection of glucose. The Damping Factor, , integrates the effects of physical 
activity and hypoglycemic medications. The governing equation for this model is:
 (1)

This approach models the glucose response as a dynamic system influenced by 
dietary intake and regulatory mechanisms. By incorporating exercise and medication 
effects into the Damping Factor, the model provides a comprehensive framework for 
predicting blood glucose levels.

In this model, x(t) represents the blood glucose level over time,  is the damping 
factor, and 0 is the natural frequency of the system. The system’s response to an 
impulse, such as a meal, is described by a damped oscillatory function, illustrating the 
dynamic interaction between glucose intake and metabolic regulation.

The damping factor  is influenced by both physical activity and medication, which 
together determine the rate at which blood glucose levels return to baseline after a 
meal. This model allows for the extraction of essential metadata, including the natural 
frequency 0, the system’s damping ratio, and other parameters crucial for accurately 
predicting future blood glucose levels using advanced computational algorithms.

Utilizing this model, the study aims to enhance the accuracy of blood glucose 
level predictions, thereby improving diabetes management through precise and 
timely forecasting. The combination of dynamic modeling techniques with real-time 
data from continuous glucose monitors creates a robust framework for developing 
predictive algorithms with significant clinical benefits.
If F(t) is represented as the Dirac delta function at t=0, the solution of the governing 
equation is: (2) 

This solution characterizes the system’s response and provides the basis for predicting 
glucose level fluctuations.
The frequency of the system at time t is given by:
where(3)
Here,  and 0represent the short-term and long-term variations in the diabetic’s blood 
glucose levels (BGLs), respectively. Using these values, the Damping Factor  can be 
calculated from the equation: (4)
Given that 0  is always greater than  when F(t) is represented as the Dirac delta 
function, the bolus injection of glucose can be derived accordingly. This mathematical 
formulation is critical for accurately modeling and predicting the dynamic responses 
of blood glucose levels.
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The force F(t) is expressed as:(5)
It is important to note that the parameters F and  are of significant interest 

due to their tangible nature and their partial dependence on the diabetic’s activities. 
However, they do not require direct input from the patient, such as the specific 
amount of carbohydrates consumed. This characteristic makes them practical for use 
in predictive models without the need for extensive patient self-reporting.

2.3 Data Transformation and Analysis
In this study, blood glucose levels were recorded every 5 minutes over a continuous 

24-hour period for 7 days using two systems: SimGlucose and DexCom CGM. During data 
transformation, the dataset underwent Discrete Fourier Transform (DFT) to determine 
the natural frequency, 0. It is generally observed by diabetes experts that food intake 
affects blood glucose levels for approximately 3.27 hours.

Additionally, DFT was applied to a 1-hour sliding window (containing 12 samples) 
to identify the frequency  for specific time frames, facilitating the detection of short-
term blood glucose fluctuations. The average values of F (impulse force) and  (damping 
factor) were then calculated for each period.

The dataset comprised 12 blood glucose level readings: x(t−55),x(t−50),…,x(t−5),x(t), 
and the blood glucose level 30 minutes later, x(t+30). This 1-hour dataset structure is 
illustrated in Figure 3.

By applying these transformation and analysis steps, the study ensured that the 
data was well-prepared for input into predictive models, enhancing the accuracy and 
reliability of the forecasts.

Figure 3, The BGL 1-hour dataset at time t

The meticulous preprocessing steps were essential for ensuring the predictive 
models’ accuracy and reliability in this study. By structuring the raw CGM data, 
advanced computational algorithms could be applied to predict blood glucose levels 
with high precision, thereby enhancing diabetes management through accurate and 
timely forecasts.

The dataset comprised 168 individual 1-hour segments, collected over a 24-hour 
period for seven days, resulting in a total of 2016 blood glucose level (BGL) samples. 
This extensive dataset was utilized in various experimental procedures to assess the 
predictive accuracy of different techniques. The main objective was to determine 
which methods could most accurately predict an individual’s BGL in the near future, 
based solely on the BGL data from the previous hour.

2.4 Data Interpretation
Initial numerical interpretation of blood glucose levels (BGL) using values x(t−55)…

x(t) proved inadequate for predictions beyond 10 minutes, resulting in a progressively 
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increasing Root Mean Square Error (RMSE) after this interval (Eskaf, Badawy, & Ritchings, 
2008).

To address this, intelligent techniques were employed, leveraging 1-hour BGL datasets for 
training and evaluating the prediction system. These datasets were analyzed using two distinct 
approaches:
1. 
30 minutes later, xp

2. 

p , was then calculated as: 
xp

These methods aimed to minimize the RMSE between the predicted BGL, xp(t+30), 
and the actual BGL, x(t+30) By employing these advanced techniques, the study 
enhanced prediction accuracy beyond the limitations of initial numerical approaches.

Where xp(t+30) represents the predicted output from the Artificial Neural Network 
(ANN), x(t+30) is the actual measured value, and N denotes the number of samples.

The Root Mean Square Error (RMSE) was chosen as the evaluation metric for this 
study due to its sensitivity to larger errors. This characteristic ensures that significant 
deviations in predicted blood glucose levels (BGL) are given appropriate attention, 
thereby improving the model’s accuracy assessment. Additionally, RMSE is expressed 
in the same units as the BGL measurements (mmol/l), making the prediction errors 
easier to interpret and compare with other studies (Kok, 2004; Sun et al., 2018).

To enhance the robustness and generalizability of the predictive models, the 
leave-one-out cross-validation (LOOCV) technique was initially considered. However, 
due to the large dataset size, a 10-fold cross-validation approach was more practical. 
This method involved systematically excluding 200 consecutive samples (equivalent 
to nearly 24 hours of data) in each iteration and using the remaining 1816 samples for 
training. The performance metric for each technique was calculated as the average 
RMSE across the 10 folds.

Recent advancements have improved the scalability and efficiency of LOOCV, 
particularly for large datasets. For example, Magnusson et al. (2020) introduced an 
efficient method combining fast approximate LOO surrogates with exact LOO sub-
sampling, significantly enhancing model comparison efficiency for extensive datasets.

3. Results
Figure 4 illustrates the typical variation in blood glucose levels (BGLs) for one of 

the real patients in the dataset. This figure highlights the natural fluctuations in BGLs 
over the monitoring period, providing a clear representation of the data used for model 
training and evaluation.

Figure 4, Discrepancy between Actual and Predicted Blood Glucose Levels (BGL) for a 
Diabetic Patient.

For the ANN model, various parameters were explored, including the number 
of layers, neurons per layer, and selection of the transfer function. The configurations 
yielding the lowest RMSE values for the 12 BGL readings, as well as the different 
combinations of metadata and raw data, are summarized in Table 2.
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Table 2: RMSE Values (mmol/l) for Various ANN Input Configurations.
Data source BGL BGL changes
virtual diabetics 30 10< 1.37±0.13 1.16±0.13 0.74±0.15
volunteers 3 12< 1.5±0.1 1.3±0.1 0.9±0.14

For the online learning and reinforcement learning approaches, the initial week’s 
data was utilized to predict the blood glucose levels for the following two weeks. During 
the second and third weeks, two volunteers chose not to continue participating, leaving 
data available for only one diabetic volunteer. Reinforcement learning was applied to 
this remaining dataset to continuously improve the prediction model based on real-
time feedback. The summarized results for this volunteer, reflecting the reinforcement 
learning adjustments, are presented in Table 3.

Table 3: RMSE Values (mmol/l) for Different ANN Input Configurations Using 
Reinforcement Learning.

Data source 2nd week 3rd week (2nd week(30updates (3rd week(20updates
virtual diabetics 30 1.25±0.13 1.5±0.12 1.03±0.14 0.8±0.14

volunteer 1 1.1 0.9 0.8 0.5

For the Genetic Algorithm (GA) approach, various parameters such as chromosome 
representation, reproduction, crossover, and mutation were explored. The lowest Root 
Mean Square Error (RMSE) values for 12 BGL readings and different combinations of 
metadata and raw data are shown in Table 4.

Table 4: RMSE Values (mmol/l) for Different GA Configurations
Data source BGL BGL changes

virtual diabetics 30 10< 0.68±0.10 1.12±0.32 0.54±0.07
volunteers 3 9< 0.7±0.11 1.5±0.1 0.4±0.01

For the online and reinforcement learning approach, data from the first week 
was used to predict the following two weeks. Due to two volunteers opting out 
during the second and third weeks, results were only available for one diabetic 
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volunteer. Reinforcement learning techniques were applied to continuously improve 
the prediction model based on real-time feedback from this volunteer’s data. These 
findings are summarized in Table 5.

Table 5 RMSE Values (mmol/l) for Different GA Input Configurations Using 
Reinforcement Learning.

Data source 2nd week 3rd week (2nd week (25 updates (3rd week (16 updates
virtual diabetics 30 0.42±0.05 0.36±0.07 0.32±0.05 0.22±0.05

volunteer 1 0.46 0.43 0.3 0.2

The findings presented in the tables highlight several important points. First, the 
RMSE values for virtual patients simulated by the SimGlucose system closely matched 
those of real-world volunteers, validating the use of SimGlucose data in these studies. 
Additionally, the online learning approach resulted in lower RMSE values compared 
to the basic method for both Genetic Algorithms (GAs) and Artificial Neural Networks 
(ANNs), indicating effective pattern learning by the algorithms. Notably, GAs consistently 
outperformed ANNs, with lower RMSE values, showcasing their superior sensitivity to 
blood glucose level fluctuations. Finally, this study achieved lower RMSE values than 
previous research, demonstrating improved prediction accuracy.
4. Discussion

This study explored the prediction of blood glucose levels (BGLs) without direct 
patient input, achieving comparable results to methods that rely on patient-reported 
data. Utilizing the Dynamic Data Model for metadata significantly outperformed raw 
data algorithms. The results demonstrated that Genetic Algorithms (GAs) performed 
better than Artificial Neural Networks (ANNs), consistent with other biomedical data 
studies (Eskaf, 2011; Mitchell, 1997). Additionally, incorporating online learning further 
reduced RMSE values, enhancing model accuracy.

The superior performance of this approach, compared to methodologies requiring 
patient input (Haque, 1999; Sandham, 1998; Pender, 1997), highlights its potential. 
Unlike Kok (2004), who required extensive learning phases, this method offers quicker 
and more accurate responses to potential risks. Projects by Zitar (2005) and Kok (2004), 
which used broad time intervals for prediction, benefit from this approach’s ability to 
deliver faster and more precise predictions.
Limitations: While the results are promising, the study has limitations. It utilized virtual 
patient simulations and data from a small number of volunteers, which may impact 
the generalizability of the findings. Future research should include larger cohorts of 
diabetic patients, both Type I and Type II, to validate these results. Additionally, this 
study focused on short-term BGL predictions, leaving the long-term applicability of 
these models unexplored. Future work could incorporate advanced methodologies 
such as deep transfer learning and dynamic time warping (DTW) to enhance prediction 
accuracy and adaptability (Magnusson et al., 2020; Marling & Bunescu, 2020; Martinsson 
et al., 2020).
Advanced Techniques: The intelligent techniques, Artificial Neural Networks (ANNs) 
and Genetic Algorithms (GAs), were implemented using Python and modern libraries. 
ANNs were developed with TensorFlow and Keras libraries, while GAs were implemented 
using the DEAP (Distributed Evolutionary Algorithms in Python) library (Abadi et al., 
2016; Chollet, 2015; Fortin et al., 2012).
Artificial Neural Networks: The ANN architecture was designed and implemented 
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using TensorFlow and Keras, robust frameworks for deep learning. TensorFlow 
provides a comprehensive suite for large-scale machine learning tasks, while Keras, 
a high-level API, facilitates the construction and training of complex models. The 
architecture included a feedforward neural network with one hidden layer using a 
tangent sigmoid transfer function and a linear activation function in the output layer. 
The model was trained using the backpropagation algorithm, employing gradient 
descent optimization and momentum to minimize the error between predicted and 
actual BGLs (Abadi et al., 2016; Chollet, 2015).
Genetic Algorithms: The GAs were implemented using the DEAP library, known for 
its flexible framework for evolutionary algorithms, facilitating the creation of genetic 
operators and strategies (Fortin et al., 2012). Each 1-hour dataset was treated as a 
chromosome, and the population consisted of the remaining dataset, excluding 
the validation subset for cross-validation. The GA used standard genetic operators—
selection, crossover, and mutation—to evolve the population toward optimal solutions. 
The fitness function was designed to minimize the RMSE between predicted and 
actual BGLs, ensuring high prediction accuracy.
Advanced Approaches in BGL Prediction: Incorporating online learning and 
reinforcement learning (RL) significantly enhances the predictive accuracy of BGL 
models. Online learning involves continuously updating the model with new data 
patterns, ensuring it remains accurate and responsive to recent data. When the 
predicted BGL (xp(t+30)) deviates from the actual BGL (x(t+30)) by more than ±10%, the 
ANN is retrained with the new pattern, and the GA chromosome dataset is updated 
accordingly.

Reinforcement learning (RL) optimizes decisions for insulin dosing and dietary 
adjustments through continuous interaction with the patient’s physiological system. In 
this RL framework, an agent (the predictive model) receives the current state (BGL and 
other parameters) and takes actions (predicting future BGLs, recommending insulin 
doses) to maximize rewards (keeping BGL within a safe range). This agent is trained 
using algorithms such as Q-learning and deep Q-networks (DQN).

These techniques were implemented using powerful libraries: TensorFlow 
and Keras for ANNs, DEAP for GAs, and OpenAI Gym and TensorFlow Agents for RL. 
Utilizing these modern approaches ensures that predictive models remain accurate 
and adaptable to the dynamic fluctuations of blood glucose levels, thereby improving 
diabetes management. These strategies pave the way for creating more advanced and 
effective tools for diabetes management, ultimately leading to better health outcomes 
(Abadi et al., 2016; Chollet, 2015; Fortin et al., 2012; Magnusson et al., 2020).
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